## BRIEF COMMUNICATION

# The Crystal Structure of $\mathrm{Cr}_{2} \mathrm{Si}_{2} \mathrm{Te}_{6}$ : Corrigendum 

RICHARD E. MARSH<br>Arthur Amos Noyes Laboratory of Chemical Physics,* California Institute of Technology, Pasadena, California 91125

Keceived June 27, 1988


#### Abstract

The structure of $\mathrm{Cr}_{2} \mathrm{Si}_{2} \mathrm{Te}_{6}$, originally described in the noncentrosymmetric space group $R 3$, is properly described in the centrosymmetric $R \overline{3}$. The structure of the related compound $\mathrm{Fe}_{2} \mathrm{P}_{2} \mathrm{Se}_{6}$, which has also been described in $R 3$, should probably be reinvestigated. © 1988 Academic Press, Inc.


The structure of $\mathrm{Cr}_{2} \mathrm{Si}_{2} \mathrm{Te}_{6}$ has recently (1) been described in space group $R 3$ (rhombohedral; hexagonal cell dimensions, $a=$ $6.7578(6), c=20.665(3) \AA, Z=3$ ) and refined to an $R$ of 0.033 for 456 reflections. It is properly described in the centrosymmetric space group $R \overline{3}$.

Starting coordinates in $R \overline{3}$ were obtained from the $R 3$ coordinates (1) by decrementing the $z$ 's by 0.64 and averaging over pairs of chemically equivalent atoms. Leastsquares refinement was based on the $460 F$ values obtained from the supplementary material. ${ }^{1}$ Convergence was quickly reached at the same $R, 0.033$, as reported earlier (l) but with 17 parameters rather

[^0]than 31. The final $R \overline{3}$ parameters are given in Table I.

The interatomic distances and angles are little changed. The two independent distances within the $\mathrm{CrTe}_{6}$ octahedron are now statistically equal, at $2.775(4)$ and 2.779 (4) $\AA$; in the $R 3$ description there were four independent distances, ranging from 2.751(14) to $2.803(12) \AA$. The $\mathrm{Si}-\mathrm{Te}$ and SiSi distances are effectively unchanged, at 2.505(6) and 2.268(9) $\AA$. A more noticeable change is in the "temperature" coefficients $U(i j)$ for the Te atoms, which were highly anisotropic in the $R 3$ description: the ratios of mean-square displacements along the major and minor axes were nearly $4: 1$ for $\mathrm{Te}(1)$ and nearly $10: 1$ for $\mathrm{Te}(2)$. On the other hand, the displacements are approximately isotropic for the $R \overline{3}$ description; indeed, refinement with all atoms isotropic led to nearly as low an $R(0.0335)$ as did the final anisotropic refinement ( 0.0328 ). The unrealistic anisotropies resulting from the $R 3$ refinement undoubtedly were due to the near-singularities associated with refining

TABLE I
Final Coordinates ( $\times 10^{0}$ ) and $U_{i j}$ 's $\mathrm{s}^{a}\left(\times 10^{4}\right)$, Space Group $R 3$

| Atom | Position | $x$ | $y$ | $z$ |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Te | $18(\mathrm{f})$ |  | $66902(15)$ | $-2541(13)$ | $24939(4)$ |  |
| Cr | $6(\mathrm{c})$ |  | 0 | 0 | $33394(20)$ |  |
| Si | $6(\mathrm{c})$ |  | 0 | 0 | $5488(31)$ |  |
|  |  | $U_{12}$ |  | $U_{33}$ | $U_{12}$ | $U_{13}$ |
| Atom |  |  |  | $U_{23}$ |  |  |
| Te | $126(4)$ | $126(4)$ | $111(4)$ | $65(3)$ | $0(3)$ | $-5(3)$ |
| Cr | $124(9)$ | $U_{11}$ | $108(14)$ | $\frac{1}{2} U_{11}$ | 0 | 0 |
| Si | $153(16)$ | $U_{11}$ | $111(27)$ | $\frac{1}{2} U_{11}$ | 0 | 0 |

Note. Scale factor (relative to supplemental $F$ table), 3.014(6). Secondary extinction parameter, $1.55(12) \times 10^{-7}$. Estimated standard deviations are in parentheses.
${ }^{a}$ The form of the "temperature" expression is $\exp \left(-2 \pi^{2}\right)\left(U_{11} h^{2} a^{* 2} \ldots+\right.$ $\left.2 U_{23} k l b^{*} c^{*}\right)$.
an effectively centrosymmetric structure in a noncentrosymmetric space group (2, 3).

The earlier authors ( 1 ) chose the noncentrosymmetric $R 3$ on the presumption that the compound is isostructural with $\mathrm{Fe}_{2} \mathrm{P}_{2}$ $\mathrm{Se}_{6}$. In the description of the structure of this latter compound (4), coordinates are reported for refinements in both $R 3$ and $R \overline{3}$; the $R 3$ structure was preferred because it gave an $R(0.038)$ "smaller than the centric'' space group. It was also noted that the $R 3$ structure was preferred by the Hamilton test (5), but no details of the comparison are given. The differences between the $R 3$ and the $R \overline{3}$ coordinates were very small, never more than $0.12 \AA$. In view of the great difficulties involved in attempting to find a correct and unambiguous noncentro-
symmetric description of a nearly centrosymmetric structure (6), a reinvestigation of the structure of $\mathrm{Fe}_{2} \mathrm{P}_{2} \mathrm{Se}_{6}$ seems desirable.

## References

1. G. Ouvrard, E. Sandre, and R. Brec, J. Solid State Chem. 73, 27 (1988).
2. O. Ermer and J. Dunitz, Acta Crystallogr. Sect. A 26, 163 (1970).
3. V. Schomaker and R. E. Marsh, Acta Crystallogr. Sect. B 35, 1933 (1979).
4. W. Klingen, G. Eulenberger, and H. Hahn, Z. Anorg. Allg. Chem. 401, 97 (1973).
5. W. C. Hamilton, "Statistics in Physical Science,' pp. 157, 216, Ronald Press Co., New York (1964).
6. R. E. Marsh, Acta Crystallogr. Sect. B 42, 193 (1986).

[^0]:    * Contribution No. 7807 from the Arthur Amos Noyes Laboratory of Chemical Physics.
    ${ }^{1}$ See NAPS Document No. 04514 for 3 pages of supplementary materials from ASIS/NAPS, Micro-
    fiche Publications, P.O. Box 3513 , Grand Central Stasupplementary materials from ASIS/NAPS, Micro-
    fiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance $\$ 4.00$ for microfiche copy or for photocopy, $\$ 7.75$ up to 20 pages plus $\$ .30$ for each additional page. All orders must be prepaid.

